

Ship Intelligence, Decarbonization, Parts & Services

Contact: Stem-To-Stern Marine, USA w: stsmar.com e: info@stem-stern.com t: +1 619-215-6323

> Marine Shaft Power Meter

+44(0)1983 282834 datum-electronics.com

Marine Shaft Power Meter

Datum Electronics' Marine Shaft Power Meter has been developed to meet the requirements of the commercial marine market. It provides customers with ongoing power monitoring data on ships, including; Propulsion Shafts, Thrusters and Generator Shafts.

The principal use of the Datum Electronics SPM system is to provide accurate and reliable data monitoring for fuel economy, efficiency optimisation, regulatory compliance and predictive maintenance.

What Can our Shaft Power Meter provide?

Datum Electronics Shaft Power Meter accurately measures the power transmitted through a shaft by using our proprietary designed strain gauges to measure torque. Alongside the speed being measured by our easy to install SPM system, enables the measurement of actual power an engine is delivering to the propeller or generator.

The Shaft Power Meter System is an essential tool, helping to reduce the running costs by maximising:

- 1. **Fuel Savings**
- 2. Improved Maintenance Scheduling
- 3. **Equipment Protection**

The cost of an accurate permanently installed SPM is very small, in comparison with potential savings in operational costs.

Features



Benefits

Shaft Power Measurement

Shaft Power is an essential input to Ship Performance Monitoring Systems. The data from monitoring actual power levels provides an accurate reference point, to assist with the assessment of:

- Engine Performance Monitoring
- Hull Condition
- Propeller Condition
- Specific Fuel Consumption
- Operational Efficiency Planning
- Ship Condition Changes

The same system will also provide data to assess the value of new equipment and operating procedures:

- Changes to Operation
- Changes to Fuel Types
- Changes to Hull Coatings

Upgrade to EEXI SHaPoLi

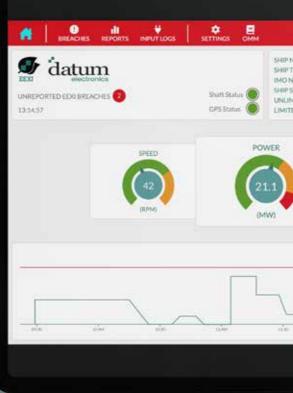
Our Type Approved EEXI-SHaPoLi solution streamlines compliance with IMO's EEXI regulations for vessels with single and multiple shafts. It combines our Type Approved SPM system with a versatile bridge interface module, applicable to multiple shafts.

The EEXI interface continuously monitors and records the vessel's power against EEXI limits, issuing clear breach warnings and automating compliance reporting. The system is Type Approved by LR, BV and ABS.

Fitted at an early stage, the torsion meter system can be used in Ship Acceptance Trials and, from that point on, be a measure of the condition of the ship, throughout its life cycle.

Technical Notes

The Torque and Power output from the torsion meter system is dependent on calculations, utilising constants from the shaft. These are: **Shaft Material** - either as shear modulus, or Young's modulus & Poisson's ratio.


Shaft **Diameter –** by direct measurement of the inside and outside diameter of a hollow shaft.

Marine Control Unit

The SPM System comes with a Marine Control Unit. This comprises a local Touchscreen display of Torque, Speed & Power and has a multitude of both Analogue & Digital Outputs, for simple integration into any performance monitoring software or data logger.

- LCD Display (Torque, Speed, Power & Status)
- Analogue Outputs for:
 - Toraue
 - Power 4-20mA, 4-12-20mA 0-5Vdc, +/-5Vdc 0-10Vdc, +/-10Vdc - Speed (unipolar only)
- Digital Outputs: - RS485 / RS232 / NMEA - Modbus RTU
- Local USB Logging (.csv files)

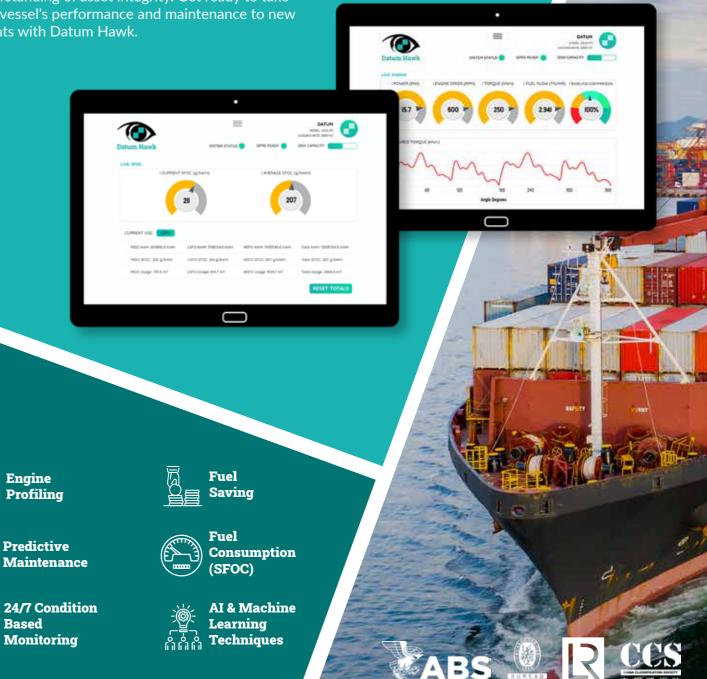
Datum Electronics Limited can conduct tests on a sample of the shaft material to determine the shear modulus. Two samples of shaft material. 20mm diameter and 150mm long, are required for this testing.

d0 Mute		EEXI	R	
ke 6: (dwt): ED POWER: POWER:	Ship Name Buik carrier 9141003 7250 40000 kW 35000 kW			
	TORQUE (4.800) (BNm)			
			1	J
	15 M		(1104)	-

Introducing ECR2: Empowering Vessels with data

Unlock the Full Potential of Your Hardware

ECR2 seamlessly integrates with your Datums Electronics SPM system, providing the engine control room with unparalleled access to crucial power information. But that's not all – we go beyond data access.


The Datum Hawk Project

A New Era in Predictive Maintenance

ECR2 marks the first step in our journey toward Datum Hawk, a cutting-edge predictive maintenance system. Datum Hawk taps into the vast reservoir of data collected by our SPM hardware, transforming it into actionable insights for vessel engineers and owners.

Unprecedented Asset Integrity Insights

Datum Hawk employs Torsional Vibrational Analysis, providing engineers and owners with an unparalleled understanding of asset integrity. Get ready to take your vessel's performance and maintenance to new heights with Datum Hawk.

From power to SFOC

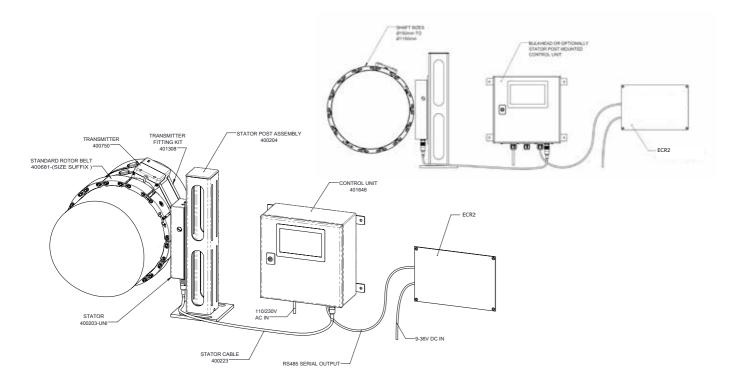
ECR2 offers more than just data access; it equips you with user-friendly reporting tools that put the power of insights at your fingertips. And for those looking to take their vessel to the next level, ECR2 offers the option to upgrade and include SFOC (Specific Fuel Oil Consumption) data.

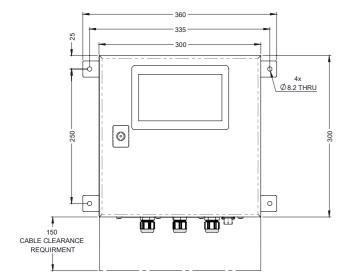
	ਸ਼ਤ	
	ш 1	
	1. VI	
	ч	
	Y -	<u>۱</u>
	\sim	
	-	
	-	-15
-		

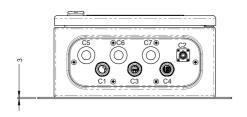
Based

Monitoring

Maintenance


	datum
Engine Perfor	mance Report
100 To 100 To 100	Details
This Name Interactive State 1975	thig Type Containentin
IMD Number #558/1955	Skip Sov (CMT)
Reporti	ing Period
Start Date 6H 10/3022	End Case 08/59/302
Start Time 14/00/UTC Time Zone	End Time: 19/00/UTC Time Zen
Eng	pine 1
Engine Paerie Marin 1	Engine Type: 2 Stree
Engine Paaloare 1087	Engine Halan: Wild TSL,
SPM Camping Kaler 10844	Engine MCR, 975Cart
Average Shaft Power 0.05 WV	Test Energy Unique Colores
Average Shaft Torius 6.00 Miles	Average Guidt RPM COL
Average Puel Power 0.20 kg	Average FFOC CologNat
Eng	pine 2
Engine Name Main 3	Engine Type 2 Sinsk
Engine Peoblem: UTHD:	Engine Maker WARTSI,
SPM:Samping Rate: S28416	Engine Maker WARTSI,
Average Shall Reven: 0.00 kW	Tana Kongo Dago CODRIM
Average Draft Torque (200 kHm	Average Bath 47% CO




Dimensions


General Overview

Control Unit

CONNECTION POINT	DESCRIPTION	CONNECTION TYPE
C1	110/230V AC INPUT	M20 GLAND
C2	SHAFT UNIT INPUT	62GB CONNECTOR
C3	ANALOGUE OUTPUT	M20 GLAND
C4	SERIAL OUTPUT	M20 GLAND
C5	SPARE	BLANK PLUG
C6	SPARE	BLANK PLUG
C7	SPARE	BLANK PLUG

Technical Specification

Instrumentation Accuracy	Shaft Torque	0.1%
	Shaft RPM	1 RPM
	Shaft Power	0.1%
System Accuracy	Shaft Torque	0.1% + Ke
	Shaft RPM	1 RPM
	Shaft Power	0.1% + K
	Ке	Total erro
System Repeatablility	Shaft Torque	0.05%
	Shaft RPM	1 RPM
	Shaft Power	0.05%
Data Output and Display	Power, Torque and Speed Display	The displa period of 24Hrs
	Total Energy	The total Totals bet
	Average Power	Average I
	Power Measurement Data Output	Average \ second
Environmental	Operating Temperature	0°C to +5
	Storage Temperature	-25°C to
	Temperature Effect on Readings	0.01% FS
Environment Sealing	Shaft Mounted Equipment	IP65
	Universal Stator Unit	IP65
	Control Unit	IP54
	Panel Mounted Display Unit	IP54 fron
Power	Supply Voltage	110-230
Calibrated Outputs	Selectable Digital outputs	RS485 [B RS485 N RS485 M
Analogue Outputs	Selectable Analogue outputs x 3 channels for Torque, Speed and Power	4-20mA 12+/-8m 0-10V +/-10V

Additional Environmental Testing

TEST	IEC60945:2002 inc Corr 2008 and IACS E10: 2018
Conducted LF Immunity	IACS E10:2018
Conducted RF Immunity	EN 61000-4-6: 2014
Radiated RF Immunity	EN 61000-4-3:2006 + Al: 2008 + A2: 2010
Fast Burst Transients	EN 61000-4-4: 2012
Surge Immunity	EN 61000-4-5: 2014 + Al: 2017
Electrostatic Discharge	EN 61000-4-2: 2009
Radiated Emissions	EN 55016-2-3: 2017 + A1: 2019
Conducted Emissions	EN 55016-2-1: 2014 + Al: 2017
Performance Test	IACS E10: 2018
Dry Heat	EN 60068-2-2: 2007
Low Temperature	EN 60068-2-1: 2007

+ Ke

+ Ke

error in shaft modulus constant and shaft diameter measurement

lisplay presents average values of torque, speed and power. The time d of this average is set the application and can vary from 0.1sec to

otal energy is displayed in kWh from the Reset Date to Today. Previous s between resets can be accessed through the menu

age Power for a period between resets is displayed in MH/MW

age Values of Shaft Power, Torque and Speed are logged at 10 times per nd

o +55°C

C to +70°C

FS per degree centigrade

front and rear

230 2Amps Vac, 24Vdc

5 [BMT-ECR] Required for use with EEXI 5 NMEA (Not compatible with EEXI) 5 MODBUS (Not compatible with EEXI)

-8mA 0-5V

+/-5V

TEST	IEC60945:2002 inc Corr 2008 and IACS E10: 2018

Low Temperature (start-up)	EN 60068-2-1: 2007
Humidity Test 1 - Cyclic	EN 60068-2-30: 2005
High Voltage	EN 60092-504: 2001
Vibration	EN 60068-2-6: 2008
Power Supply Variation	EN 60092-504: 2016
Power Supply Failure	EN 60092-504: 2016
Insulation Resistance	IACS E10: 2018
Acoustic Noise	Section 8 Table 2.3 IEC 60945: 2002
Compass Safe Distance	Section 8 Table 2.3 IEC 60945: 2002
Static Inclination	EN 60092-504: 2016
Dynamic Inclination	EN 60092-504: 2016

